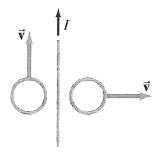
Elektriciteit en magnetisme 2 Instructor: A.M. van den Berg Nederlandse versie: zie pagina's 1-2

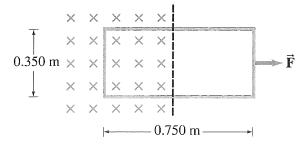
You don't have to use separate sheets for every question. Write your name and S number on every sheet


There are 4 questions with a total number of marks: 75

WRITE CLEARLY

(1) (Total 10 punten)

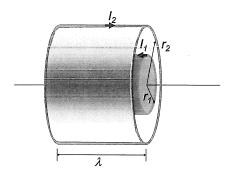
Two loops of wire are moving with a velocity \vec{v} in the vicinity of a very long straight wire which carries a current I; see the figure. The loop at the left-hand side moves parallel to the wire, the one on the right-hand side moves perpendicular to the direction of the wire.


- (a) (5 marks) Give the direction of the induced current in each of the loops.
- (b) (5 marks) Explain your answer.

(2) (Totaal 20 marks)

A single loop with dimensions as shown in the figure is partially located in a uniform magnetic field with strength 0.65 T; the direction of the field points inside the page. The total resistance of the loop is 0.28 Ω . The loop moves with a constant velocity of 3.40 m s⁻¹ to the right. Gravitational and friction forces can be neglected.

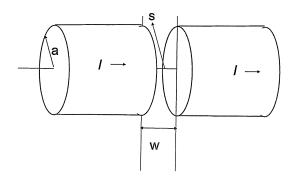
- (a) (5 marks) Does the magnetic flux enclosed by the loop increase or does it decrease if one moves the loop to the right?
- (b) (5 marks) Calculate the induced EMF in the loop.
- (c) (5 marks) Calculate de induced current in the loop and indicate in which direction the current flows. Explain your choice.
- (d) (5 marks) Calculate the force which is required to pull the loop to the right.



(3) (Total 20 marks)

A coaxial cable is made of two concentric cylindrical shaped conductors. The thickness of the wall of these conductors can be neglected. The radius of the inner conductor is r_1 , the one of the outer conductor is r_2 . Through these conductors runs a current I which is equal

in magnitude for both conductors. The direction of the current in the outer conductor is opposite to that in the inner conductor.


- (a) (5 marks) Calculate the magnetic field strength between these two conductors.
- (b) (5 marks) Calculate the magnetic flux between these two conductors over a distance with length λ along the coaxial cable. Thus through an area A with dimensions: $A = [(r_2 r_1) \cdot \lambda]$
- (c) (5 marks) Calculate the inductance per unit length of this cable.
- (d) (5 marks) Calculate the magnetic energy contained by the magnetic field in the region between the two conductors and over a length λ of this cable.

(4) (Total 25 marks)

A fat wire with radius a carries a constant current I, uniformly distributed over its cross section. A narrow gap in the wire, of width $w \ll a$, forms a parallel plate capacitor, as shown in the figure.

- (a) (5 marks) Calculate the magnetic field strength in the gap, at a distance s < a.
- (b) (10 marks) Assume that at time t=0 the surface charges $+\sigma$ en $-\sigma$ are equal to zero. And that these charges increase constant in time; $\sigma = I t / (\pi a^2)$. Calculate the electric and magnetic field strengths in the gap as a function of s and of t.
- (c) (10 marks) Calculate the electromagnetic energy density (energy per unit of volume) u_{EM} and the Poynting vector in the gap.

